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1 F-Vectors of Polytopes

1.1 Types of polytopes

There are two types of convex polytopes in Rd.

1. simplicial polytopes (all faces are simplices),

2. simple polytopes (degree of every vertex = d, dim(P ) = d).

There is a duality between these two types. Basically, a point on each face, and take the
convex hull to get the dual polytope. P is simple iff P ∗ is simplicial.

Definition 1.1. Let P ⊆ Rd be a convex polytope with dim(P ) = d. Let fi(P ) be the
number of i dimensional faces of P . This is called the F-vector of P .

Proposition 1.1. fi(P ) = fd−i−1(P
∗).

Topologists like simplicial polytopes, but combinatorialists like simple polytopes. We
will focus on simple polytopes, but the previous proposition tells us that this is really the
same story.

1.2 Dehn-Sommerville equations

Theorem 1.1 (Dehn-Sommerville equations1). Let P ⊆ Rd be simple. Then

d∑
i=k

(−1)i
(
i

k

)
fi =

d∑
i=d−k

(−1)d−i

(
i

d− k

)
fi.

for all 0 ≤ k ≤ d.

1The case d = 3 was proved by Euler. The cases d = 4, 5 were proved by Dehn, and d > 5 was proved
by Sommerville.
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Remark 1.1. When k = 0, this becomes

d∑
i=0

(−1)ifi = 1.

This is Euler’s formula. When d = 3, we get f0 − f1 + f2 = 2, where f3 = 1.

Example 1.1. Let P be a simplex in Rd. Then f0 = d + 1, and fi =
(
d+i
i+1

)
.

Example 1.2. Let Q ⊆ Rd be a d-cube. Then f0 = 2d, fd = 1, and fd−1 = 2d. In general,
fi =

(
d
i

)
2d−i, because we have

(
d
i

)
ways to choose a face and 2d−i coordinates left. We get

that
d∑

i=0

fi = 3d,

which could be otherwise proven as an elementary exercise.

Proposition 1.2. Let F(t) =
∑d

i=0 fit
i. Define G(t) := F(t − 1) =

∑d
i=0 git

i. Then

gk =
∑d

i=1(−1)i
(
i
k

)
fi.

Proof.

G(t + 1) =

d∑
i=0

gi(t + 1)i =

d∑
i=0

gi

i∑
k=0

(
i

k

)
tk =

d∑
k=0

tk

[
d∑

i=k

gi

(
i

k

)]
=

d∑
i=0

tkfk = F(t).

So the Dehn-Sommerville equations say that gi = gd−i.

Example 1.3. For a simplex, F(t) = (1 + t)d+1. Then G(t) = td+1.

Example 1.4. For the d-cube, F(t) = (2 + t)d, and G(t) = (1 + t)d.

Let’s prove the theorem.

Proof. Fix ϕ : Rd → R a Morse function (a linear function that is nonconstant on edges of
the polytope). For a vertex v, define the index indϕ(v) to be the number of edges increasing

by ϕ. Observe that 0 ≤ indϕ(v) ≤ d. Define h
(ϕ)
i to be the number of vertices v ∈ V (P )

such that indϕ(v) = i.

We claim that fk =
∑d

i=k

(
i
k

)
h
(ϕ)
i . Take any k-face Q, and let v be the minimum vertex

with respect to ϕ. Let i = indϕ(v). The number of k-faces Q is
∑d

i=k

(
i
k

)
h
(ϕ)
i , which is the

number of ways to choose Q with minimum vertex v times the index.

Then
∑d

i=0 h
(ϕ)
i ti = F(t− 1). So for all ϕ, h

(ϕ)
i = gi. If we replace ϕ with −ϕ, we get

h
(ϕ)
i = h−ϕ

d−i. The left hand side is g, and the right hand side is gd−i.
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